
Z2 Abelian Higgs: a cluster expansion approach

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1987 J. Phys. A: Math. Gen. 20 2615

(http://iopscience.iop.org/0305-4470/20/9/043)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 05:34

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/20/9
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 20 (1987) 2615-2628. Printed in the U K  
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Abstract. The Z, lattice Abelian Higgs model in D = 2 + 1 is studied. New cluster expansion 
techniques which involve consideration of two perturbative terms are developed. These 
are used to obtain strong coupling expansions for the vacuum energy density and the mass 
gaps of both ‘meson’ and ‘plaquette’ excitations. The expansions are used, via Pad6 
approximant techniques and duality considerations, to explore the phase diagram of the 
theory. 

The location of the second-order phase boundaries are in good agreement with those 
obtained by other methods. The behaviour of the line of first-order transitions is examined 
and is estimated to terminate at A 3 4.5. 

1. Introduction 

Cluster expansion techniques have been applied with some success in obtaining strong 
coupling expansions of pure gauge theories via Hamiltonian formulations. An obvious 
extension of these methods is the consideration of Hamiltonians which contain matter 
fields as well as gauge fields. Eventually one would like to consider a realistic 
model-SU(3) gauge theory coupled to fermions-it being possible to treat fermions 
naturally in a Hamiltonian formulation (see, for example, Susskind 1977, Banks et al 
1977). However in order to develop the techniques, a convenient candidate for 
consideration is the Z ,  Abelian Higgs model. 

The model has an interesting phase structure which has been studied using a variety 
of methods (Banks and Sinclair 1981, Kogut 1980, Horn and Yankielowicz 1979, Horn 
and Katznelson 1980), and is discussed in some detail by Fradkin and Shenker (1979). 
The phase diagram is known to have three phases present. When the gauge field and 
matter field temperatures are low, a ‘free charge’ phase can exist. Here one has 
Coulomb-like interactions with massless gauge bosons. This phase is separated from 
a Higgs/confinement phase by second-order phase boundaries. In this other phase, 
one finds either massive Higgs bosons (short-range interactions due to charge screening, 
the vacuum expectation value of the matter fields being non-zero) or a confining phase 
(due to long-range gauge excitations). These two regions are separated by a line of 
first-order transitions which is thought to extend into, but terminate in, the region of 
confinement. The two phases have, in fact, been shown to be analytically connected 
(Fradkin and Shenker 1979) and thus, in effect, constitute a single phase. 

In D = 2 +  1, strong coupling expansions for the theory have been obtained to low 
order (Banks and Sinclair 1981 ), using the standard Rayleigh-Schrodinger perturbation 
expansion. At higher orders, with the complication of two perturbative terms, this 
formulation becomes unmanageable. In this paper, cluster expansion techniques are 
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used to obtain perturbative expansions in the strong coupling region for the vacuum 
energy density (VED) to x”, and for the mass gaps of both the ‘meson’ and the 
‘plaquette’ to x8.  A disagreement with earlier work is noted. The new expansions, 
along with the use of duality transformations, are used to explore the phase diagrams 
of the theory. 

The mass gap vanishes at the second-order phase transition signalling the presence 
of massless excitations. The locations of these transitions are estimated using Pad6 
approximants of the expansions. The first-order phase transition is investigated by 
calculating the latent heat on crossing the self-dual line in a suitable formulation of 
the theory. 

The layout of the rest of the paper is as follows. In § 2 the formulation of the 
theory and the cluster techniques used are discussed. In P 3 the results and their 
analysis are presented. Section 4 contains conclusions on the results obtained and on 
the viability of the methods introduced in this paper. 

2. Formulation and method 

2.1. The Hamiltonian 

The Hamiltonian under consideration is 

w = - A / d p  c ( a l ) - d p / Z ~ ( T ~ ) - l / A d p  c U 3 a 3 U 3 a 3 - Z J p  73(+373. (2.1) 
I S P I 

Here I labels links, s sites and p plaquettes. a and T are independent Pauli spin 
matrices, defined at the links and sites of a quadratic lattice, each with eigenvalues 
* l .  By simple rescaling and change of variable one obtains the more convenient form 

where x = 1/2A2, 5 = p A z  and 7 = p / A z .  
The Hamiltonian is invariant under local gauge transformations (Fradkin and 

Susskind 1978). The zeroth-order gauge invariant ground state has the eigenvalues of 
all u1 and r1 to be +l. Further gauge invariant states can be formed from closed paths 
of flipped links or from strings of links joining flipped sites. The lowest-lying gauge 
invariant excitations consist of either (i) a ‘meson’ excitation of flipped T~ on adjacent 
sites joined by a flipped (T~,  or (ii) a ‘plaquette’ of four flipped a,;  which of these has 
the lowest energy will depend on the value of 7.  

The study of the model starts from the strong coupling region where x is small and 
6 finite. The expansions derived here will thus be in x and ex. In references below 
to order x’, say, corresponding powers of 5 are implicit. 

2.2. Cluster expansion techniques 

The method used to produce the required expansions is a variation on the cluster 
expansion of Nickel (1980) and Marland (1981) which has been further developed 
and well documented by Irving and Hamer (1984a, b). The main complication here 
is the need to consider clusters which contain two ‘species’ corresponding to the 
possibilities of either ‘plaquette’ or ‘meson’ excitations. For example, connected 
clusters contributing to the VED to fourth order are shown in figure 1. Here a square 
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Figure 1. Connected clusters contributing to the V E D  up to x4 and their lattice realisations. 

represents a plaquette and an open circle a meson. The lattice realisations of these 
diagrams are also shown. In the calculation of the mass gaps, disconnected clusters 
must also be taken into consideration. 

With pure gauge theories in D = 2 +  1, a series for the V E D  to x Z J  can be obtained 
using clusters of up to J plaquettes. However, with the introduction of Higgs fields, 
this is no longer true and one must consider clusters such as those shown in table 1. 
Here the clusters contribute at orders less than x2'. 

The VED per site for an infinite lattice may be expressed (see, for example, Irving 
and Hamer 1984b) 

where the sum runs over all linked clusters (m, a,) made up of m points in configuration 
a,. l,,,m,,, is the lattice constant, i.e. the number of ways the cluster (m, a,) can be 
embedded on the lattice, divided by the number of sites N. The quantities E , , ~ , , ,  are 
the connected contributions made by the clusters (m, a,) to the vacuum energy. 

The ground-state energy for any given cluster (i, a , )  can be expressed as the sum 
of contributions from each embedded subcluster 

U;;" = c c;::; E],., (2.4) 

where the CJ;:; are the embedding constants for topologies ( j ,  a,) within (i, a, ) .  The 
aim here is to calculate the quantities E , , ~ , , ,  as series expansions in two coupling 
constants by an iterative method, starting from small clusters (low order) and working 
upwards. To this end a variation on the expansion method used by Hornby and Barber 

Table 1. Examples of J-point clusters contributing to order less than x2' 

J Order 

5 54x5 
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(1989 ,  for use with two perturbative terms, was developed as described in appendix 
1 .  Straightforward use of this algorithm for the VED enabled calculation of the &. 
Inversion of (2.4) gives the E ,  and subsequent summation yields the V E D  to requisite 
order. 

A similar, albeit slightly more sophisticated, approach is required when considering 
the mass gaps. From standard perturbation theory it can be readily shown (Nickel 
1980, Hamer and Irving 1985) that the mass gap F may be written 

F =  Fo+(lIVIl)+A (2.5) 
where Fo is the unperturbed value of the mass gap and 11) is the unperturbed first 
excited state. Here (11 Vll) makes no contribution and may be ignored. A may be 
written as an iterative perturbation expansion in the usual manner, expanding in powers 
of v: 
A = ((11 V ( P / F  - Ho) VI 1) + (11 V(P/ F - Ho) V ( P I F -  Ho) VI 1 )  + . .)Iconstant in  N .  (2 .6)  
Here P is a projection operator onto states orthogonal to 11) and N is the number of 
sites in the system. Each term in the expansion may be represented by a connected 
or disconnected cluster. A cluster expansion for A may thus be written (Hamer and 
Irving 1985): 

A = c C n . P m 1  E L3,, 

An,pn = 1 Cn'ppl m,p,, E ~ P , ,  

(2.7) 

(2.8) 

for the infinite lattice, and 

for a cluster. (m ,  p m )  denotes a set of m sites arranged in a topology P m ,  which may 
be connected or disconnected. EL,@, is the contribution from all diagrams which span 
that topology and Am,pm is the total contributions from all diagrams contained within 
(m ,  pm).  The C::;, are again the embedding constants for topologies (m ,  P m )  within 
(n, p n ) .  & , p m  is the overall lattice constant. 

The aim, once more, is to calculate An,pn for a given cluster as a perturbation series 
to some given order. An algorithm for use with two coupling constants was developed 
(see appendix 2). Here one calculates the mass gap F, via summation of the E, exact 
to a given order in x. This is then used iteratively in the calculation of the contributions 
to next highest order. 

Clusters were generated enabling expansions to x" for the VED and to xs for the 
mass gaps. 148 connected clusters were required for the former and 342 disconnected 
clusters for the latter. 

Storing the representation of the clusters is not a problem. However, beyond x", 
the time required to evaluate the mass gap series becomes the limiting factor, the 
number of clusters increasing rapidly with each additional order. The calculation is 
complicated by the need to consider J-point clusters contributing to orders less than 
xZJ  (see table l ) ,  which also proliferate as one moves to higher order. 

In obtaining the series 7 is held fixed, resulting in expansions in x and tx. The 
results are thus directly comparable with those of Banks and Sinclair (1981) where 7 
appears explicitly. As some disagreement was noted, the analytic calculation of the 
mass gap series to x4, via the Rayleigh-Schrodinger perturbative expansion (see, for 
example, Kogut 1979), was repeated. Errors were revealed in the series presented by 
Banks and Sinclair. The corrected series were in agreement with the new cluster 
computations and are shown in table 2. Also shown, in tables 3 and 4, are sample 
series expansions for the plaquette mass gap ( 7  = 5)  and the VED (7 = 1 )  respectively. 
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Table 2. Coefficients of the strong coupling expansions for EllnL- E,,, and .Ebx- E,,,. 
In each case the subscript ij labels the coefficient of t'x'. 

E,,", - E",, I,= 1 + 2 7  
/ --I 
20-  2 

I22 - 12 + 14/( 1 + 2 7) 
I,, = 16 + 4/(  1 + 217) + 4/( 1 + 2 ~ ) ~  

I,, = (887'+52417*+7627+229)/4( 1 + 2 1 ) ' ( 3 + 2 7 )  

I,= (5767,+672q3 + 2 5 2 ~ ~ +  1787 - 2)/(  7 + 1)(27 + 

/ @ = + A  
- (  1207'+66072+ 10507 +375)/4(1+27)'(5+ 2 7 ) + + ( 2 7  -3)  -9 

E,, - E".¶, b,=4 
b20=- ;  

b22 = - 8 / ( 4 ~ ~ -  1 )  
b -+e 

40- 96 

b42 = (5607' -56v2-4927 +238)/(  1 +27)'(3 + 2 7 ) (  1 - 2 ~ ) ~  
- (807 + 120)/( 1 + 2 ~ ) ~ (  5 + 2 7 )  
- (607 + 4 2 ) / ( 1 +  27)'+ 32/(1+ 27)2(  1 - 2 ~ ) ~ ( 3  - 2 7 )  - 5 / ( 5  + 2 7 )  
+ 17/ (3+27)-35/2(1+27)  - 11/2(1-27) 

b, = -( 8 6 4 ~ ~  - 8 9 6 ~ ~  + 4 2 4 ~ ~  + 32 7 + 8)/ ( q 2  - 1)(4v2 - 1 ) 3  

3. Analysis and discussion 

3.1. The second-order phase boundaries 

Having obtained expansions in x and [x for the mass gaps, 6 was held fixed, its value 
depending on the particular value of p under consideration. The second-order phase 
boundaries were located by analysis of the Pad6 approximants of the resultant series 
in x. The real positive zeros of the [2,4], [3,4], [3,5] and [4,4] PadCs gave an estimate 
of the critical points. A standard Pad6 analysis of the logarithmic derivative (Dlog) 
of the series was also performed. If one assumes that the mass gap behaves as 
F - (x - x,)" near the critical point, the pole and its residue give an estimate of the 
critical point and index respectively. 

In the analysis of the Dlog series the number of terms under consideration and the 
influence of nearby complex singularities meant that only the [2,4] Pad6 was reliable. 
One can motivate consideration of this particular Pad6 by comparison with similar 
analysis of the longer pure gauge series (Hamer and Irving 1985) and by its agreement 
with the zeros obtained directly from the original series. However, the critical index, 
which was found to lie within -9% of the estimates obtained from a finite-lattice 
treatment (Hamer 1983) and the analysis of the pure gauge series, must be viewed 
with reservation. 

Here it is convenient to convert back to the original variables and utilise the duality 
properties of W (see, for example, Fradkin and Susskind 1978), where reversal of the 
roles of the links and sites of the lattice leave the Hamiltonian invariant under the 
mappings 

A + z  Z + A  P .+ 1 l P .  
When p = 1, the phase diagram is thus symmetric under the interchange of z and 

A. Likewise, a diagram with a particular value of p and one with its reciprocal value 
are similarly related. Figure 2 shows the estimates obtained for the second-order phase 
boundaries when p = 1. The results obtained from the Dlog analysis are plotted. 



2620 M J Lamont 

x x x x x  

x x x x  - m m m  
m 2 m o  r - m  P N m m  

t 
2 
X 

p’ml .  w w -  

E 

C s Y NY “z *Y ”z “z 

h 

II 
P 
v 

2 > 
e, 
9 
8 

x 
n 

L 

vi .- 

e, - 
5 

G 

v, 

d 
3 
ly 

x x  
m m m  
r - W O  
m a r -  
m i 0 0  
- 0 -  N N w  
* m m  m m m  
w m m  

- c ? -  
0 0 0  

I 1  

x x  
N “ O m  m m i - - w  m m w w d  N - o P w  

- - -  
a h 4  
X Y X  

N 
I 

X 
p’ p’ 

z 

% 
m 
p’ m 

m m 
2 
I 

N 

a 
X 
m m m m 

m m m 

4 4: 
x x a  



Z, Abelian Higgs: a cluster expansion approach 2621 

I I /  

I / _ - - - -  

0.5 -+ 
/ 

F r e e  charge 
/ 

/ 
/ 

Confinement ( I  ) 

0 0.5 1 
A 

Figure 2. The phase diagram for fi  = 1.0. The full lines are the estimated positions of the 
second-order phase boundaries. Sample errors are estimated from the spread of the zeros. 

Along the axes the theory reduces to either: 
(i)  the Ising model ( A  = O ) ,  or 
(ii) the pure 2, gauge theory (z = 0). 
The critical points of these theories are well established and the corresponding 

estimates obtained here agree well with, for example, the biased estimate of Hamer 
and Irving (1985) in the pure gauge case and that of Marland (1981) for the Ising 
model. Hamer and Irving's estimates were obtained from the analysis of a strong 
coupling expansion to xI4 and thus give a measure of the accuracy of the results 
obtained here: 

A,(x8) = 0.583 pure gauge 

A , ( x ' ~ )  = 0.573 pure gauge. 

These figures would suggest that the second-order phase boundaries shown in figure 
2 would be shifted to lower A(z) by higher-order corrections. Comparison of these 
two values gives a good indication of the accuracy of the analysis, which is seen to 
be a considerable improvement on that obtained by Banks and Sinclair (1981) who 
obtained A, = z, = 0.37. The zeros corresponding to this value were obtained at low 
order in the Pad6 analysis. However, a study of the Pad6 tables shows it to be an 
unstable zero and in marked disagreement with values obtained here and elsewhere$. 

From figure 2,  it can be seen that the second-order phase transition continues into 
the diagram, showing remarkable consistency on approaching the self-dual line. There 
is little evidence for the marked curvature obtained by a 1/N expansion analysis 
(Kogut 1980). Estimates of the critical index were found to remain constant at v - 0.59, 

+ There seems to be some confusion in the literature as to the interpretation of the results quoted by Pfeuty 
and Elliott (1971). Careful reconsideration of the Hamiltonian used by the above led to the conclusion that 
the value quoted by Banks and Sinclair (1981) and Kogut (1980) should have been A,=0.570 rather than 
A c  = 0.403. 
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showing little change as one progresses into the phase diagram. This is in contrast to 
the results from one finite lattice study (Irving and Thomas 1982), but in agreement 
with the trends reported in another (Horn and Karliner 1982) and is also what one 
would expect from universality arguments. The point at which the second-order lines 
combine is estimated to be at A = z = 0.59. 

Figure 3 shows the phase diagram with p = 0.1. The estimates obtained from 
W(A, z, p = 0.1) and W(z, A, p = 10) are plotted. 

1.0 

Z 
0.5 

0 0.5 1.0 1 
x 

Figure 3. The phase diagram for fi  = 0.1. The full and broken curves show the positions 
of the second-order phase boundaries estimated from the plaquette and meson mass gap 
series respectively. 

The phase transition between ‘confinement’ and ‘free charge’ occurs when the mass 
of the lowest-lying excited state goes to zero. In the unperturbed situation one would 
expect the ‘meson’ to take over from the ‘plaquette’ as the lowest-lying state at 7 = $. 
However the masses are ‘renormalised’ by perturbative effects which serve to pull the 
‘plaquette’ mass below that of the ‘meson’ until 7 reaches some lower value (or vice 
versa depending on p ) .  

Thus for p = 0.1, the line of phase transitions for the ‘meson’ mass gap does not 
in fact represent the phase boundary, as supposed by Banks and Sinclair (1981), rather 
the much more satisfactory ‘plaquette’ line. For comparison both are plotted in figure 
3. Comparison of figures 2 and 3 would suggest that the phase structure of the theory 
is insensitive to the value of p. 

3.2. The first-order phase boundary 

The first-order phase transition between the Higgs(1) and the confinement( 11) regions 
was investigated by considering the latent heat on crossing the self-dual line, A = z 
when p = 1. 

The VED series in 5, x may be re-expressed in terms of A, z. The first few terms are 

(3 .1)  VED(Z, A )  = -(2A 4- l/Z) - 1/8A3 - Z 3 / ( Z A  + 2 )  +. . . . 
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In terms of the symmetrical variables 

p = f ( z + A )  T = ~ ( z - A )  

the self-dual line becomes r = 0 and the latent heat is given by 

A ( P )  = id la r (E , -  E I I ) I , = O .  (3.2) 

Now in practice by fixing 77 and 6 one is effectively considering the VED on a hyperbola 
zA = 6 in the z-A plane (see figure 4). One is thus able to express the series in terms 
of z or A alone. Calculation of A may thus be effected as follows: 

A=ta/aT(E,(A) 

= i ( a A / a r  a /ah E ~ ( A )  - a z / a r  a l a h  EII(~))IA\=,=Jg 

= -a/ah E,(A)I ,=~, .  (3.3) 

One can therefore Pad6 the derivative of the VED dEl /dA from the strong-coupling 
region ( A  large) to the self-dual line, where the latent heat may be evaluated. The 
series for the VED was obtained for a wide range of 77 up to order A - ”  and the latent 
heat calculated as described above. The results obtained are shown in figure 5 ,  where 
values from the [4,4], [5,5] and [6,4] Padis are plotted. One can see that the results 
from the different Pad6 are consistent even at large A (small T )  which is well away 
from the strong-coupling regime. This would suggest that the number of terms in the 
series is sufficient for reasonable conclusions to be made. One would expect the latent 
heat and thus the line of first-order transitions to go to zero continuously, i.e. terminate 
in a second-order phase transition. This behaviour is seen to occur at low A, the latent 
heat dropping smoothly to zero at A - 0.6 which coincides very nicely with the junction 
of the two second-order phase boundaries. 

At higher A, one witnesses a smooth fall, figure 5 suggesting a drop to zero in the 
latent heat at A c 3  4.5. Here the latent heat is small, and comparison of the [4,4] and 
[ 5 , 5 ]  Pad6 values suggest that the effect of higher-order terms is to pull the latent heat 
down. How much so is open to question and consequently one is unable to make a 

I \ / 

x 
Figure 4. Diagram showing hyperbola and self-dual line used in calculation of the latent 
heat. 
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2.0 j 

Figure 5. Variation of latent heat on crossing self-dual line against A. Plotted are the [ 5 , 5 ]  
(full curve), [4,4] (A)  and [6,4] ( x )  Pad6 values. 

particularly accurate estimate of A=, but the general trend is clear. A more precise 
location of the critical point would require a longer series expansion. 

The estimate of A, obtained here is to be compared with the values A,= zc=  
1.37*0.05 and A,= zc= 1.58 found by a finite lattice study (Irving and Thomas 1982) 
and by the low-order 1/ N expansion (Kogut 1980) respectively. 

The conclusion that A, lies 34.5 must be tempered by consideration of the curious 
feature apparent at A - 1.41 (7 - 0.5). The possibility of spurious poles in the Pad& 
was considered. Standard quadratic Padis of the latent heat series were also performed 
and these also showed similar behaviour and so rule out this possibility. One is 
encouraged to regard the feature as a genuine effect due to the fact that it coincides 
with similar behaviour in the curvature of the p function in the finite lattice study 
(Irving and Thomas 1982) mentioned above. In this case it was identified, apparently 
without any very good reasons, as signalling the termination of the first-order line, the 
critical value being that quoted above. 

Accepting the anomaly as a real feature, then either it is indicative of the expected 
critical point and the latent heat observed beyond this point is pulled to zero by 
higher-order corrections; or it reflects additional, as yet unrevealed, structure of the 
model, such as the presence of a metastability of some sort. This, however, remains 
an open question. 

4. Summary and conclusions 

New cluster expansion techniques have been used to derive series to order x" for the 
VED and to x8 for the mass gaps of the 2, Abelian Higgs model which extend those 
previously available. At low order, disagreement with results obtained elsewhere 
(Banks and Sinclair 1981) was noted and corrected expressions (to x4) presented. 

Analysis of the mass gap series, which although not particularly well behaved, 
enabled the second-order phase boundaries to be located with some confidence. The 
results were in good agreement with those obtained elsewhere (Horn and Karliner 
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1982, Irving and Thomas 1982) and a marked improvement on those obtained by 
analysis of a low-order strong coupling expansion (Banks and Sinclair 1981). The 
critical index was found to be constant as one moves along the second-order transition 
line, at variance with a finite lattice study (Irving and  Thomas 1982), but in agreement 
with another (Horn and Karliner 1982) and  with what one would expect from univer- 
sality considerations. 

The increased length of the series obtained meant that it was possible to investigate 
the first-order phase transition for the first time. The results suggest that the first-order 
line vanishes at higher A than was previously suggested by a finite lattice study and a 
low-order 1/ N calculation. 

The motivation of the paper was to explore the viability of new cluster expansion 
techniques for obtaining strong coupling expansions from Hamiltonians with two 
perturbative terms. The feasibility has indeed been demonstrated, with the following 
results: errors have been exposed in a previous low-order calculation and corrected 
series presented, the position of the second-order phase transitions have been confirmed 
and  the behaviour of the line of first-order transitions has been illuminated. 

The method is presently being extended in investigations of Z, Abelian Higgs in 
D = 3 + 1 and a simple Hamiltonian formulation of QCD with Susskind fermions. 
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Appendix 1. Series generation of VED from a Hamiltonian with two perturbative terms 

Consider the Hamiltonian 

with the exact eigenvalue equation H P  = EP, where 

and  

X 

E = C S’x’+’Er+i,s+i. 
r J = O  

Here lkm) are the eigenstates of the unperturbed Hamiltonian and  the indices k, m, 
which label the states, are the eigenvalues of H o ,  HA respectively. Thus 

Hol km ) = E ( k ) 1 km ) HAIkm) = E ( m ) / k m ) .  

To simplify the notation and facilitate computation, a matrix notation for the 
expansion is introduced. Let ( m ,  k )  denote an  array of coefficients in x and t x .  By 
working to overall order x M ,  attention is restricted to the leading triangle of coefficients 
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which are limited by the constraint m + k = M + 2. Thus 

Now 

H = f i 0 - x V - t x V '  
(A1.2) 

By projecting onto (kml and letting 
cc 

( k m /  = 2 a , + l , r + l ( k m ) ~ S x f + s  = cy(km)  
r , r = O  

(Al .2 )  becomes 

cy(km)  = (A1.3) 

Here V t Z '  are the matrix elements which connect states ( k ' m ' )  with lkm).  Iterative 
use of (A1.3) enables the generation of higher-order coefficients belonging to the arrays 
cy, and thus IT). 

( E -  E , , ) a ( k m ) - x  zk,,,,, V:; 'U(k 'm' ) - tX  zk,m, VLkm'cY(k'm') 
E ( k m )  - Ell 

The energy estimate obtained (to order M )  is 

(A1.4) 

One can see that IT) need only be evaluated to order M to obtain an  expansion 

Explicitly, eM is evaluated via 
for E to order 2M + 1 .  

zk,,,, E ( k ,  m ) l a ( k ,  m)I ' -x  &,,, V k z ' a ( k m ) a ( k ' m ' )  
-6x x k , m ,  V L ~ " ' a ( k m ) c y ( k ' m ' )  

E M  = 
z k m  Ia(km)12 

The initial conditions depend upon the unperturbed values of Ha. In the case in 
question here, 

The calculation of the series for the V E D  proceeds as follows. 
( i)  Construction of a (compact) matrix representation for V and V'  connecting 

states on a given cluster ( m ,  a,,,). 
( i i )  Use of the above algorithm to calculate w, , , , , , (E)  for all clusters contributing 

at a given order. The relevant a are evaluated using (A1.31, and are then used in 
(A1.4) to evaluate E, which is then used in turn in (A1.3), etc. 

(iii) Inversion of (2.4) to obtain E , , , , ~ , , ,  , 

(iv) Multiplication of the E by the corresponding lattice constants. Subsequent 
summation yields the VED. 
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Appendix 2. Series expansion for the mass gaps of a Hamiltonian with two 
perturbative terms 

To produce the required perturbative expansion for An,,B,,, (2.7), let Dm.B,,, be the matrix 
whose lowest eigenvalue is A,,,,,,,; then Dm,o,!, has the block matrix form (Irving and 
Hamer 1984a) 

(A2.1) 

where x e  = x( V +  [V') and fi; = H,+ vH;+ (Am,,,, ,  - F ) .  Other notation is as given 
in the text. 

are calculated 
in an iterative fashion, the algorithm being derived in a similar way to that used in 
appendix 1. 

The values of the overall mass gaps F and cluster contributions 

One obtains 

(A,,p,,,-Ell)(Y(km)-X x k ' m ,  Vf:r'(Y(km)-@ Ck,,,, VLLm'cu(km) 
&(km)+(Am,p , , , -F )  

a ( k m )  = . (A2.2) 

The denominator may be re-expressed as E,(km) - E , ,  + ( A ,  - F)k.m2-?.  Here E l l  
again refers to the unperturbed energy of the first excited state. Now 

(A2.3) 

- - Am. , , , ,  +O(XZMt2) 

C k m  (A,,,, - F ) / a ( k m ) l * - x  C k . , ,  Vi;'(~(k, m ) a ( k ' m ' )  
- t x  c k ,  m ,  v;Lm ' (Y ( km ) (Y ( k m ') 

. (A2.4) - - 
x k m  Ia(k, m)l' 

Evaluation of F proceeds as follows. 
( i )  Initialisation. Here 
( i i )  (A2.2) is used to evaluate the relevant (Y which are then used in (A2.4) to 

(iii) Am,,,,, is calculated for all clusters contributing at a particular order. 
(iv) These are then used to obtain an  expression for F via (2.6) and (2.7). 
(v) F is then used in (A2.2) t o  evaluate the necessary (Y to the next highest order. 

= 1, E l l  = Fo. 

evaluate Am,o,,, for a particular cluster. 
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